Uzay Mekiği Atlantis bir görev için UUİ'ye fırlatılırken görülüyor. Mekik Dünya'nın gravitasyonal alanını terk etmeyeceği için fırlatılışta kurtulma hızına ulaşması gerekmez.

Fizikte kurtulma hızı, gravitasyon alanındaki (yerçekimi etkisindeki) herhangi bir cismin kinetik enerjisinin söz konusu alana bağıl potansiyel enerjisine eşit olduğu andaki hızıdır. Genellikle üç boyutlu bir uzayda bulunan cimsin kendisini etkileyen gravitasyon alanından kurtulabilmesi için ulaşması gereken sürati ifade eder.


1303 - Kurtulma Hızı Nedir?

Ayrıntılı tanım


178 - Kurtulma Hızı Nedir?

Isaac Newton'un kurtulma hızı ile ilgili bu diyagramı dünyanın aynı noktasından, aynı yönde ancak farklı hızlarda fırlatılan cisimlerin izleyecekleri yolu (yörünge) illüstre etmektedir. E yörüngesinin kurtulma hızının üzerinde fırlatılan cisme ait olduğu anlaşılmaktadır. Dolayısıyla bu cisim dünyanın yerçekiminden kaçabilecektir.


Belirli bir gravitasyonel alan etkisi altında ve pozisyonda, bir cismin gravitasyon kaynağından herhangi bir ek ivme gerektirmeden kaçabilmesi için sahip olması gereken minimum hız o cismin kurtulma hızıdır. Kurtulma hızına sahip cisim kaçmaya çalıştığı kütleye geri düşmez veya o cisim etrafında herhangi bir yörüngede (orbit) hareket etmez. Kurtulma hızı teoride yönden bağımsızdır; yani bu hıza sahip cisim üç boyutlu bir uzayda hangi yönde hareket ediyor olsun çekim kaynağından kaçmayı başaracaktır. Ancak yön, pratik uzay uygulamalarında önemlidir çünkü Uzay Mühendisliği bilimince de sıkça incelendiği gibi, cimsin fırlatılış hızı ile beraber sahip olacağı son yörüngeyi belirler. Dolayısıyla, kutupsal (polar) yörüngeye yerleştirilecek bir uyduyu taşıyan füzeye atmosferdeki yükselişi esnasında verilecek yön ile eliptik bir yörüngeye yerleştirilecek başka bir uyduyu taşıyan füzeye verilecek yön, hemen hemen ayni yükseliş hızına sahip de olsalar farkıdır. Kurtulma hızına ulaştırılıp, dünyanın yerçekim alanını terk ettirilecek (örn. uzay sondaları) gibi cisimler fırlatılışın genellikle tüm aşamalarını atmosfere dik olarak geçtikten sonra uzay ortamında ateşlenen nispeten küçük roket motorlarıyla gidecekleri hedef gezegene doğru yönlendirilirler.

Aynı fiziksel teoremi tersten düşünecek olursak, tek merkezli bir gravitasyonel (yerçekim) alanının etkisi altında ve sonsuz uzaklıktaki bir cisim, söz konusu gravitasyonal alanı yaratan kütleye yaklaşırken en fazla o cisimden kaçarken erişmesi gereken minimum hız olan kurtulma hızında seyir edecektir. Kurtulma hızı genellikle kütlelerin yüzeyinde ölçülür. Yani, "Dünya'nın kurtulma hızı 11.2 km/s'dir" dedigimizde aslında dünyanın yüzeyinde, deniz seviyesindeki bir konuma relatif kurtulma hızından bahsederiz. Buna nazaran, örneğin 9,000 km yüksekte (uzayda) cismin dünyanın yerçekiminden kaçması için sahip olması gereken kurtulma hızı 7.1 km/s'dir. Bir başka deyişle, cisim yerçekim kaynağından uzaklaştıkça, o kaynaktan kaçabilmesi için erişmesi gereken kurtulma hızı azalır.

Terimin yanlış kullanımları
Kurtulma Hızı, herhangi bir cismin büyük kütlenin etrafındaki herhangi bir yörüngeden çıkması için sahip olması gereken hızla karıştırılmamalıdır. Belirli bir motor ve hareket kabiliyetine sahip cisim (örneğin bir helikopter), büyük kütlenin kütle merkezinden istedigi herhangi bir hızda uzaklaşabilir. Uzaklık arttıkça, cismin büyük kütlenin yerçekiminden ilelebet kurtulabilmesi için çıkması gereken hız azalacaktır.