sponsorlu bağlantılar
Türk Geometriciler

Hârizmî tarafından 830 yılında yazılan Cebri ve'l Mukabele adlı eserin ikinci bölümü; ikinci dereceden tam olmayan denklemlerin geometrik çözümünü konu edinir.

Her tip denklem için, iki ayrı çözüm yolu gösterilmiştir. Bu çözüm yollarından birincisi geometrik çözüm yolu olup, bu çözüm yoluna "kare dikdörtgen metodu" denmektedir. Bu tür çözüm şeklini, eski Mısır, Mezopotamya, eski Yunan ve eski Hint matematiğinde görmek mümkün değildir. Hârizmî'nin bu çözüm şekli, matematikte cebir ve geometri arasında, bir nevi yakınlık tesisini hedef tutan araştırmanın ilk ürünüdür. Hemen belirtmek gerekir ki, matematik tarihi eserleri, analitik geometriyi Fransız matematikçisi Descartes ile başlatır. Konun gerçek yönü şudur: Hârizmî, Descartes'ten tam 1000 yıl önce analitik geometriye ait uygulamanın ilk örneklerini vermiştir.

Ömer Hayyam denklem konusu ile de çok önemli çalışmalar ortaya koymuştur. Birçok cebir denklemlerinin çözümünü geometrik olarak açıklamıştır. Hayyam, kübik denklemlerin kısmi çözüm şekillerini, sistematik bir şekilde tarif ve tasnif etmiş ve birçok denklemleri geometri olarak çözmeyi başarmıştır. Fransız matematikçi Descartes'ten 1000 yıl önce Hârizmî, 600 yıl önce Ömer Hayyam tarafından, analitik geometriye ait zamanı için orjinal problem ve çözüm yolları ortaya konmuştur. Analitik geometrinin Descartes'le olan ilgisini şu şekilde belirtmek gerçeğin tam ifadesi olsa gerekir. Fransız matematikçi ve filozof Descartes, mevcut analitik geometri bilgilerini, tarif ve tasnif ederek sistemleştirmiş, aynı zamanda da kısmen genişletmiştir.


sponsorlu bağlantılar