Ünlü Türk İslam Matematikçileri ve Onların Matematiğe Katkıları

 Ünlü Türk İslam Matematikçileri ve Onların Matematiğe Katkıları

  Okunma: 96543 - Yorum: 40
  1. #1
    Osmanlı-Türk matematikçileri ülkenin fen bilimlerindeki geri kalmışlığı nedeniyle zaman ve enerjilerini genellikle eğitime ayırmışlardır. Ancak 19. yüzyılın sonlarında araştırma yapmak ve yeni bilgiler üretmek fırsatını bulabilmişlerdir. Bu faaliyetlerin başladığı ilk yüzyıl içinde uluslararası düzeyde araştırma ve yayın yapmış olmak kriteriyle tarandığında aşağıdaki isimlere rastlanmaktadır. 20. yüzyılın ikinci yarısından itibaren bu kritere uyan matematikçi sayımız epey artmıştır ancak henüz hayatta olan matematikçilerimizi, bu listenin biraz da tarihi bir değer taşımasını hedeflediğimizden, bu listeye almadık.

    Bugünkü Türk matematik ortamının oluşmasına ciddi katkılar yapmış pek çok matematikçimiz bu çabaları sonucu kendileri araştırma ve yayın yapmaya zaman bulamadıkları için kendilerine duyulan minnettarlık kendisini bu listede ifade edememektedir. Bu listeyi, tarihin insafsızlığına sığınarak, yalnızca kendi dönemlerinin güncel araştırmalarında başarıya ulaşmış ve artık hayatta olmayan matematikçilerimize ayırdık. Yine de listenin tam ya da eksik olduğu zaman içinde yapılacak arşiv araştırmalarıyla belli olacaktır.

    Ali Kuşçu (1474-1525)
    Türk İslam Dünyası astronomi ve matematik alimleri arasında, ortaya koyduğu eserleriyle haklı bir şöhrete sahip Ali Kuşçu, Osmanlı Türkleri’nde, astronominin önde gelen bilgini sayılır. “Batı ve Doğu Bilim dünyası onu 15. yüzyılda yetişen müstesna bir alim olarak tanır.” Öyle ki; müsteşrik W .Barlhold, Ali Kuşcu’yu “On Beşinci Yüzyıl Batlamyos’u” olarak adlandırmıştır. Babası, Uluğ Bey’in kuşcu başısı (doğancıbaşı) idi. Kuşçu soyadı babasından gelmektedir. Asıl adı Ali Bin Muhammet’tir. Doğum yeri Maveraünnehir bölgesi olduğu ileri sürülmüşse de, adı geçen bölgenin hangi şehrinde ve hangi yılda doğduğu kesinlikle bilinmektedir.

    Ancak doğum şehri Semerkant, doğum yılının ise 15. yüzyılın ilk dörtte biri içerisinde olduğu kabul edilmektedir. 16 Aralık 1474 (h. 7 Şaban 879) tarihinde İstanbul’da ölmüş olup, mezarı Eyüp Sultan Türbesi hareminde bulunmaktadır. Ölüm tarihi; torunu meşhur astronom Mirim Çele-bi’nin (ölümü, Edirne 1525) Fransça yazdığı bir eserin incelenmesi sonucu anlaşılmıştır. Mezar yerinin 1819 yılına kadar belirli olduğu ve hüsn-ü muhafazasının yapıldığı; ancak 1819 yılından sonra, Ali Kuşcu’ya ait mezarın yerine, zamanının nüfuzlu bir devlet adamının mezar taşının konmuş olduğu anlaşılmaktadır. Uluğ Bey’in Horasan ve Maveraünnehir hükümdarlığı sırasında, Semerkant’ta ilk ve dini öğrenimini tamamlamıştır. Küçük yaşta iken astronomi ve matema-tiğe geniş ilgi duymuştur.

    Devrinin en büyük bilginlerinden; Uluğ Bey , Bursalı Kadızade Rumi, Gıyaseddün Cemşid ve

    Mu’in al-Din el-Kaşi’den astronomi ve matematik dersi almıştır. Önce,Uluğ Bey, tarafından 1421 yılında kurulan Semerkant Rasathanesi ilk müdürü, Gıyaseddün Cemşid’in, kısa süre sonra da Rasathanenin ikinci müdürü Kadızade Rumi’nin ölümü üzerine, Uluğ Bey Rasathaneye müdür olarak Ali Kuşcu’yu görevlendirmiştir. Uluğ Bey Ziyc’inin tamamlanmasında büyük emeği geçmiştir. Nasirüddün Tusi’nin Tecrid-ül Kelam adlı eserine yazdığı şerh, bu konuda da gayret ve başarısının en güzel delilini teşkil etmektedir. Ebu Said Han’a ithaf edilen bu şerh, Ali Kuşcu’nun ilk şöhretinin duyulmasına neden olmuştur. Kaynakların değerlendirilmesi sonucu anlaşılmaktadır ki; Ali Kuşcu yalnız telih eseriyle değil, talim ve irşadıyle devrini aşan bir bilgin olarak tanınmaktadır. Öyle ki; telif eserlerinin dışında, torunu Mirim Çelebi, Hoca Sinan Paşa ve Molla Lütfi (Sarı Lütfi) gibi astronomların da yetişmesine sebep olmuştur. Bu bilginlerle beraber, Ali Kuşcu’yu eski astronominin en büyük bilginlerinden birisi olarak belirtebiliriz.

    Cahit Arf (1910-1997)

    1910 yılında Selanik’te doğdu. Yüksek öğrenimini Fransa’da Ecole Normale Superieure’de tamamladı (1932). Bir süre Galatasaray Lisesi’nde matematik öğretmenliği yaptıktan sonra İstanbul Üniversitesi Fen Fakültesi’nde doçent adayı olarak çalıştı. Doktorasını yapmak için Almanya’ya gitti. 1938 yılında Göttingen Üniversitesi’nde doktorasını bitirdi. Yurda döndüğünde İstanbul Üniversitesi Fen Fakültesi’nde profesör ve ordinaryus profersörlüğe yükseldi. Burada 1962 yılına kadar çalıştı. Daha sonra Robert Koleji’nde Matematik dersleri vermeye başladı.1964 yılında Türkiye Bilimsel ve Teknik Araştırma Kurumu (Tübitak) bilim kolu başkanı oldu.

    Daha sonra gittiği Amerika Birleşik Devletleri’nde araştırma ve incelemelerde bulundu; Kaliforniya Üniversitesi’nde konuk öğretim üyesi olarak görev yaptı. 1967 yılında yurda dönüşünde Orta Doğu Teknik Üniversitesi’nde öğretim üyeliğine getirildi. 1980 yılında emekli oldu. Emekliye ayrıldıktan sonra TÜBİTAK’a bağlı Gebze Araştırma Merkezi’nde görev aldı. 1985 ve 1989 yılları arasında Türk Matematik Derneği başkanlığını yaptı.

    Arf İnönü Armağanı’nı (1948) ve Tübitak Bilim Ödülü’nü kazandı (1974). Cebir ve Sayılar Teorisi üzerine uluslararası bir sempozyum 1990′da 3 ve 7 Eylül tarihleri arasında Arf’in onuruna Silivri’de gerçekleştirilmiştir. Halkalar ve Geometri üzerine ilk konferanslarda 1984′te İstanbul’da yapılmıştır. Arf, matematikte geometri kavramı üzerine bir makale sunmuştur. Cahit Arf 1997 yılının Aralık ayında bir kalp rahatsızlığı nedeniyle aramızdan ayrıldı.

    Kerim Erim (1894-1952)

    İstanbul Yüksek Mühendis mektebi’ni bitirdikten (1914) sonra Berlin Üniversitesi’nde Albert Einstein’in yanında doktorasını yaptı (1919). Türkiye’ye dönünce, bitirdiği okulda öğretim üyesi olarak çalışmaya başladı. Üniversite reformunu hazırlayan kurulda yer aldı. Yeni kurulan İstanbul Üniversitesi Fen Fakültesi’nde analiz profesörü ve dekan olduğu gibi Yüksek Mühendis Mektebi’nde de ders vermeye devam etti. Yüksek Mühendis Mektebi İstanbul Teknik Üniversitesi’ne dönüştürülünce buradan ayrıldı ve yalnızca İstanbul Üniversitesi’nde çalışmaya devam etti. Daha sonra burada ordinaryüs profesör oldu. 1948 yılında Fen Fakültesi Dekanlığı’na getirildi.

    1940-1952 yılları arasında İstanbul Üniversitesi Fen Fakültesi’ne bağlı Matematik Enstitüsü’nün başkanlığını yaptı. Türkiye’de yüksek matematik öğretiminin yaygınlaşmasında ve çağdaş matematiğin yerleşmesinde etkin rol oynadı. Mekaniğin matematik esaslara dayandırılmasına da öncülük etti. Matematik ve fizik bilimlerinin felsefe ile olan ilişkileri üzerinde de çalışmalarda bulunan Erim’in Almanca ve Türkçe yapıtları bulunmaktadır. Bunlardan bazıları şunlardır:
    Nazari Hesap (1931), Mihanik (1934), Diferansiyel ve İntegral Hesap (1945), Über die Traghe-its-formen eines modulsystems (Bir modül sisteminin süredurum biçimleri üstüne – 1928)

    Ömer Hayyam (1048-1131)

    Asıl adı Giyaseddin Ebu’l Feth Bin İbrahim El Hayyam’dır. 18 Mayıs 1048′de İranın Nişabur kentinde doğan Ömer Hayyam bir çadırcının oğluydu. Çadırcı anlamına gelen soyadını babasının mesleğinden almıştır. Fakat o soyisminin çok ötesinde işlere imza atmıştır. Daha yaşadığı dönemde İbn-i Sina’dan sonra Doğu’nun yetiştirdiği en büyük bilgin olarak kabul ediliyordu. Tıp, fizik, astronomi, cebir, geometri ve yüksek matematik alanlarında önemli çalışmaları olan Ömer Hayyam için zamanın bütün bilgilerini bildiği söylenirdi. O herkesten farklı olarak yaptığı çalışmaların çoğunu kaleme almadı, oysa O ismini çokça duyduğumuz teoremlerin isimsiz kahramanıdır. Elde bulunan ender kayıtlara dayanılarak Ömer Hayyam’ın çalışmaları şöyle sıralanabilir.

    Yazdığı bilimsel içerikli kitaplar arasında Cebir ve Geometri Üzerine, Fiziksel Bilimler Alanında Bir Özet, Varlıkla İlgili Bilgi Özeti, Oluş ve Görüşler, Bilgelikler Ölçüsü, Akıllar Bahçesi yer alır. En büyük eseri Cebir Risalesi’dir. On bölümden oluşan bu kitabın dört bölümünde kübik denklemleri incelemiş ve bu denklemleri sınıflandırmıştır. Matematik tarihinde ilk kez bu sınıflandırmayı yapan kişidir. O cebiri, sayısal ve geometrik bilinmeyenlerin belirlenmesini amaçlayan bilim olarak tanımlardı. Matematik bilgisi ve yeteneği zamanın çok ötesinde olan Ömer Hayyam denklemlerle ilgili başarılı çalışmalar yapmıştır. Nitekim, Hayyam 13 farklı 3. dereceden denklem tanımlamıştır. Denklemleri çoğunlukla geometrik metod kullanarak çözmüştür ve bu çözümler zekice seçilmiş konikler üzerine dayandırılmıştır. Bu kitabında iki koniğin arakesitini kullanarak 3. dereceden her denklem tipi için köklerin bir geometrik çizimi bulunduğunu belirtir ve bu köklerin varlık koşullarını tartışır.

    Bunun yanısıra Hayyam, binom açılımını da bulmuştur. Binom teoerimini ve bu açılımdaki kat sayıları bulan ilk kişi olduğu düşünülmektedir. (Pascal üçgeni diye bildiğimiz şey aslında bir Hayyam üçgenidir). Öğrenimi tamamlayan Ömer Hayyam kendisine bugünlere kadar uzanacak bir ün kazandıran Cebir Risaliyesi’ni ve Rubaiyat’ı Semerkant’ta kaleme almıştır. Dönemin üç ünlü ismi Nizamülmülk, Hasan Sabbah ve Ömer Hayyam bu şehirde bir araya gelmiştir. Dönemin hakanı Melikşah, adı devlet düzeni anlamına gelen ve bu ada yakışır yaşayan veziri Nizamül-mülk’e çok güvenirdi. Ömer Hayyam ile ilk kez Semerkant’ta tanışan Nizam onu İsfahan’a davet eder. Orada buluştuklarında O’na devlet hülyasından bahseder ve bu büyük hayalinin gerçekleşmesi için Hayyam’dan yardım ister. Fakat Hayyam devlet işlerine karışmak istemez ve teklifini geri çevirir. 4 Aralık 1131′de doğduğu yer olan Nişabur’ da fani dünyaya veda eder.

    Matrakçı Nasuh (Bilinmiyor-1553)
    Türk, minyatürcü. Ayrıca matematik ve tarih konularında kitaplar da yazmış çok yönlü bir bilgindir. Doğum tarihi ve yeri bilinmiyor. Kâtip Çelebi ölüm tarihi olarak 1533′ü vermekteyse de, bunun doğru olmadığı bugün kesinleşmiştir. Çeşitli kaynaklarda onun 1547′den, 1551′den, 1553′ten sonra ölmüş olabileceği ileri sürülmektedir. Yaşamı üstüne bilgi de yok denecek kadar azdır. Saraybosna yakınlarında doğduğuna, dedesinin devşirme olduğuna ilişkin kesinleşmemiş ipuçları vardır.

    Enderun’da okumuştur. Matrakçı ya da Matrakî adıyla anılması, lobotu andıran sopalarla oynandığı ve eskrime benzeyen bir tür savaş oyunu olduğu bilinen “matrak” oyununda çok usta olmasından ve belki de bu oyunun mucidi bulunmasından ileri gelmektedir. Nasuh ayrıca çok usta bir silahşördü. Bu nedenle Silahî adıyla da anılırdı. Türlü silah ve mızrak oyunlarındaki ustalığı nedeniyle Osmanlı ülkesinde “üstad” ve “reis” olarak tanınması için 1530′da I. Süleyman (Kanuni) tarafından verilmiş bir beratı da vardı. Çeşitli silahların nasıl kullanılacağını ve dövüş yöntemlerini anlatan Tuhfetü’l-Guzât adlı bir kılavuz kitap bile yazmıştı.

    Nasuh, özellikle geometri ve matematik alanlarında önemli bir bilim adamıydı. Uzunluk ölçülerini gösteren cetveller hazırlamış ve bu konuda kendinden sonra gelenlere önderlik etmiştir. Matematiğe ilişkin iki kitabı Cemâlü’l-Küttâb ve Kemalü’l- Hisâb ile Umdetü’l-Hisâb’ı I. Selim (Yavuz) döneminde yazmış ve padişaha adamıştır. Bu yapıtlardan sonuncusu uzun yıllar matematikçilerin elkitabı olarak kullanılmıştır.

    Gelenbevi İsmail Efendi (1730-1790)
    1730 yılında şimdiki Manisa’nın Gelenbe kasabasında doğan Gelenbevi İsmail Efendi, Osmanlı İmparatorluğu matematikçilerindendir. Asıl adı İsmail’dir. Gelenbe kasabasında doğduğu için ikinci adı onun bu doğduğu kasabadan gelir. Daha çok Gelenbevi adıyla ün kazanmıştır. Önce, kendi çevresindeki bilginlerden ilk bilgilerini almıştır. Daha sonra, öğrenimini tamamlamak üzere İstanbul’a gitmiştir. Burada, çok değerli ve kültürlü öğretmenlerden yararlanıp matematik bilgisini oldukça ilerletmiştir. Müderrislik sınavına kazananarak 33 yaşında müderris olmuştur.

    Bundan sonra kendisini tümüyle ilme verip çalışmalarına devam etmiştir.
    Gelenbevi, eski yöntemle problem çözen son Osmanlı matematikçisidir. Sadrazam Halil Hamit Paşa ve Kaptan-ı Derya Cezayirli Hasan Paşa’nın istekleri üzerine, Kasımpaşa’da açılan Bahriye Mühendislik Okulu’na altmış kuruşla matematik öğretmeni olarak atandı. Bu atama ona parasal yönden bir rahatlık getirdi. Hakkında şöyle bir öykü anlatılır: ‘Bazı silahların hedefi vurmaması, padişah III. Selim’i kızdırmış ve bunun üzerine Gelenbevi’yi huzuruna çağırarak ona uyarıda bulunmuştur. Gelenbevi bunun üzerine hedefe olan uzaklıkları tahmin ederek gerekli silahlardaki düzeltmeleri yapmış ve topların hedefi vurmalarını sağlamıştır. Gelenbevi’nin bu başarısı padişahın dikkatini çekmiş ve padişah tarafından ödüllendirilmiştir. Gelenbevi, Türkçe ve Arapça olmak üzere tam otuz beş eser bırakmıştır. Türkiye’ye logaritmayı ilk sokan Gelenbevi İsmail Efendi’dir.

    Salih Zeki Bey(1864-1921)
    1864 yılında İstanbul’da yoksul bir ailenin oğlu olarak dünyaya geldi. Babası Boyabatlı Hasan Ağa, annesi Saniye Hanımdır. Anne ve babasının ölümü üzerine ninesi tarafından on yaşındayken Darüşşafaka’ya verildi. 1882 yılında Darüşşafaka’yı birincilikle bitirdi. Aynı yıl Posta ve Telgraf Nezareti Telgraf Kalemi (Fen Şubesi)’ne memur olarak atandı. 1884 yılında Nezaretin Avrupa’da uzman telgraf mühendisi ve fizikçi yetiştirme kararı üzerine birkaç arkadaşıyla birlikte Paris’e gönderildi ve burada Politeknik Yüksekokulu’nda elektrik mühendisliği öğrenimi gördü. 1887 yılında İstanbul’a döndü ve eski dairesinde elektrik mühendisi ve müfettiş olarak çalıştı. Ek görev olarak Mekteb-i Mülkiye’de (bugün Ankara Üniversitesi’ne bağlı Siyasal Bilgiler Fakültesi) fizik ve kimya dersleri verdi (1889-1900). Bu arada Rasathane-i Amire müdürlüğünde ve II. Meşrutiyetin ilanından (1908) sonra Maarif Nezareti Meclis-i Maarif üyeliğinde bulundu. 1910’da Mekteb-i Sultani (bugün Galatasaray Lisesi) müdürlüğüne atandı. 1912’de Maarif Nezareti müsteşarı, 1913’te Darülfünün-ı Osmani (bugün İstanbul Üniversitesi) rektörü oldu. 1917’de rektörlükten ayrıldıysa da üniversitedeki görevini Fen Şubesi (Fakültesi) Müderrisi (Profesör) olarak sürdürdü. Ömrünün sonuna doğru aklî dengesini kaybetti ve tedavi altındayken 1921 yılında Şişli’deki Fransız Hastanesi’nde öldü. Fatih Camiinin bahçesine gömüldü.

    3 kez evlenmiş olan Salih Zeki, bu evliliklerden birini Halide Edip’le (Adıvar) yapmış, ölümünden kısa bir süre önce ayrılmıştı. Salih Zeki, önde gelen son dönem Osmanlı matematik bilginlerindendi. İkdam, Darüşşafaka ve İktisadiyat gazeteleri ile Darülfünun dergisine sayısız katkıda bulundu. Dönemin ünlü bilginleriyle matematik ve fen bilimleri konusunda yazılı tartışmalara girdi ve bu konularda bir kısmı ders kitabı olmak üzere çok sayıda yapıt verdi.
    Yapıtları: Hendese (Geometri) [lise ders kitabı]; Hikmet-i Tabiiye (Fizik) [lise ders kitabı]; Mebhas-ı Savt (Fonetik); Mebhas-ı Elektrik-i Miknatisi (Elektro Magnetizma); Mebhas-ı Hararet-i Harekiye (Termodinamik); Mebhas-ı Cazibeyi Umumiye (Genel Çekim); Mebhas-ı Elektrikiyet ve Şariyet (Elektrik ve Kılcallık); Hesab-ı İhtimali (İhtimaller Hesabı); Mebhas-ı Hareket-i Seyalat (Akışkanların Hareketi); Hendese-i Tahliliye (Analitik Geometri); Mebhas-ı Nazariye-i Temevvücat (Dalga Teorisi); Heyet-i Riyaziye (Matematik Astronomi); Kamus-u Riyaziyat (Matematik Ansiklopedisi); Asar-ı Bakiye (Ölmez Eserler). Son iki yapıtın tamamı, ayrıca Henri Poincare’den çevirdiği dört kitap basılmamıştır.

    Masatoşi Gündüz İkeda(1926-2003)
    Cebirsel sayılara katkılarıyla tanınan Japon asıllı Türk matematik bilgini. 1948′de Osaka Üniversitesi Matematik Bölümü’nü bitirdi. 1953′te doktor, 1955′te de doçent unvanlarını aldı. 1957-59 arasında Almanya’da Hamburg Üniversitesi’nde Helmuth Hasse’nin yanında araştırmalar yaptı. Hasse’nin önerisi üzerine 1960′ta Türkiye’ye gelerek Ege Üniversitesi Tıp Fakültesinde İstatistik dersleri vermeye başladı. 1961′de aynı üniversitenin fen fakültesinde yabancı uzmanlığa atandı. 1964′te Türk uyruğuna geçerek, 1965′te doçent, 1966′da profesör oldu. 1968′de Ege Üniversitesi’nin izniyle bir yıl süreyle çalışmak üzere Orta Doğu Teknik Üniversitesi’ne gitti. İzninin bitiminde Orta Doğu Teknik Üniversitesi’nin sürekli kadrosuna girdi. Çeşitli tarihlerde Hamburg, ABD’deki California ve Ürdün’deki Yermuk üniversitelerinde konuk öğretim üyesi,1976′da Princeton’daki Yüksek Araştırma Enstitüsü’nde araştırmacı olarak çalıştı. Türkiye Bilimsel ve Teknik Araştırma Kurumu’nun (Tübitak) Temel Bilimler Araştırma Kurumunda yer aldı. Orta Doğu Teknik Üniversitesi Pür Matematik Araştırma Ünitesi başkanlığı yaptı. Cebir ve sayılar kuramına katkılarından dolayı 1979′da Tübitak Bilim Ödülü’nü kazandı. Japonya’da bulunduğu dönemde halkalar kuramı ve grupların matrisle gösterimi üzerine araştırmalar yapan İkeda, 1970′lerde cebirsel sayılar kuramına yönelerek, rasyonel sayılar cisminin salt Galois grubunun otomorfizimleri ve tümelliği konularında önemli çalışmalar gerçekleştirdi. Ünlü matematik dergisi Crelle’s Journal’da yayımlanan bir çalışmasında Galois grubunun çok özel bir yapıda olduğunu gösterdi.

    Ali Nesin
    1956′da İstanbul’da doğdu. İlkokuldan sonra ortaokulu İstanbul’da Saint Joseph Lisesi’nde, liseyi de İsviçre’nin Lozan kentinde tamamlayan Nesin 1977-1981 yılları arasında Paris VII Üniversitesi’nde matematik öğrenimi gördü. Daha sonra ABD’de Yale Üniversitesi’nde matematiksel mantık ve cebir konularında doktora yapan Ali Nesin, 1985-1986 arasında Kaliforniya Üniversitesi Berkeley Kampusü’nde öğretim üyeliği yaptı. Türkiye’ye kısa dönem askerlik görevi için geldiği sırada “orduyu isyana teşvik” iddiasıyla tutuklanarak yargılandı. Yargılanma sonunda beraat ettiği halde pasaport verilmediği için işine dönemeyen Nesin, sonunda yeniden passaport alarak yurtdışına gitti. 1987-1989 arasında Notre Dame Üniversitesi’nde yardımcı doçent, ardından 1995′e kadar Kaliforniya Üniversitesi Irvine Kampusü’nde doçent ve daha sonra profesör olarak görev yaptı. 1993-1994 Öğretim Yılı’nı Bilkent Üniversitesi’nde misafir öğretim görevlisi olarak geçirdi. 1995′te, babası Aziz Nesin’in ölümü üzerine yurda kesin dönüş yaptı ve Nesin Vakfı yöneticiliğini üstlendi. Ayrıca Bilgi Üniversitesi Matematik Bölümü Başkanı olan Ali Nesin iki çocuk sahibidir. Kasım 2004′den beri de Nesin Yayınevi genel yönetmenliğini yapmaktadır.

    Ali Nesin’in Matematik ve Korku, Matematik ve Doğa, Matematik ve Sonsuz, Develerle Eşekler, Önermeler Mantığı adlı kitaplarının yanısıra çeşitli dergilerde çıkmış bilimsel makaleleri ve İngilizce bir kitabı bulunmaktadır. Matematiksel araştırma alanı “Morley mertebesi sonlu gruplar”dır. Aynı zamanda, üç ayda bir yayımlanan, Matematik Dünyası adlı bir matematik dergisi çıkarmaktadır.

    Matematik araştırmaları, bölüm başkanlığı ve Nesin Vakfı yöneticiliğinin yanı sıra yağlıboya resim, desen ve portre çalışmaları da yapmaktadır.


  2. #2
    Türk-İslam Dünyası'nda Analitik Geometri
    Hârizmî tarafından 830 yılında yazılan Cebri ve'l Mukabele adlı eserin ikinci bölümü; ikinci dereceden tam olmayan denklemlerin geometrik çözümünü konu edinir.

    Her tip denklem için, iki ayrı çözüm yolu gösterilmiştir. Bu çözüm yollarından birincisi geometrik çözüm yolu olup, bu çözüm yoluna "kare dikdörtgen metodu" denmektedir. Bu tür çözüm şeklini, eski Mısır, Mezopotamya, eski Yunan ve eski Hint matematiğinde görmek mümkün değildir. Hârizmî'nin bu çözüm şekli, matematikte cebir ve geometri arasında, bir nevi yakınlık tesisini hedef tutan araştırmanın ilk ürünüdür. Hemen belirtmek gerekir ki, matematik tarihi eserleri, analitik geometriyi Fransız matematikçisi Descartes ile başlatır. Konun gerçek yönü şudur: Hârizmî, Descartes'ten tam 1000 yıl önce analitik geometriye ait uygulamanın ilk örneklerini vermiştir.

    Ömer Hayyam denklem konusu ile de çok önemli çalışmalar ortaya koymuştur. Birçok cebir denklemlerinin çözümünü geometrik olarak açıklamıştır. Hayyam, kübik denklemlerin kısmi çözüm şekillerini, sistematik bir şekilde tarif ve tasnif etmiş ve birçok denklemleri geometri olarak çözmeyi başarmıştır. Fransız matematikçi Descartes'ten 1000 yıl önce Hârizmî, 600 yıl önce Ömer Hayyam tarafından, analitik geometriye ait zamanı için orjinal problem ve çözüm yolları ortaya konmuştur. Analitik geometrinin Descartes'le olan ilgisini şu şekilde belirtmek gerçeğin tam ifadesi olsa gerekir. Fransız matematikçi ve filozof Descartes, mevcut analitik geometri bilgilerini, tarif ve tasnif ederek sistemleştirmiş, aynı zamanda da kısmen genişletmiştir.

    Türk-İslam Dünyası'nda Aritmetik

    Aritmetikte temel işlem olarak adlandırılan; toplama, çıkarma, çarpma, bölme ve kesirli ifadelerle ilgili bilgiler, ilkel şekliyle, Eski Mısır ve Mezopotamya'da vardı. Bu bilgiler, uzun zaman aralığı içinde gelişerek, bugünkü kullanılabilir ve sistemleşmiş durumunu almıştır. Matematik tarihinde; aritmetikte, ondalık sayılarda virgül kavramı ile, tam sayı kavramında sıfır rakamının kullanılması çok önemli bir olaydır.

    Bilim tarihi eserleri, ondalık sayı kavramında önemli yeri olan virgül kullanma şerefinin, 15. yüzyıl Türk-İslam Dünyası matematik ve astronomi alimi Gıyasüddin Cemşid'e ait olduğunu belirtir. Gıyasüddin Cemşid tarafından hazırlanan Risalet'ül Muhitiyye adlı eserde, aritmetik işlemlerde ilk kez virgül kullanılmıştır.

    Türk-İslam Dünyası'nda Cebir

    Objektif olarak hazırlanmış, matematik tarihi eserleri incelendiğinde, açık olarak şu hüküm görülür: Matematiğin geniş bir dalı olan cebire ait temel bilgilerin büyük bir çoğunluğu, 8. ile 16. yüzyıl Türk - İslam Dünyası alimleri tarafından ilk olarak ortaya konulmuş ve belli bir noktaya kadar da geliştirilmiştir.

    İslamiyetin Başlangıç Yılları
    İslamiyetin başlangıç yıllarında; dini günlerin tespiti, namaz vakitlerinin belirlenmesi, takvim hazırlanması gibi dini problemlerle uğraşılmış olunduğu muhakkak ise de, o devir İslam matematikçilerinin, arazi ölçüleri, veraset hesapları, yükseklik tayini ve günlük yaşantı için gerekli pratik ölçme ve hesaplamalar hakkında bazı çalışmaların varlığı söz konusu olabilir. Hamid Dilgan; Büyük Matematikçi Ömer Hayyam adlı eserinde bu konuda şunları yazar : "İslam matematiği, ancak hicretin ikinci yüzyıl ortalarında Bağdat'ta doğmuştur." Ancak bu tarihten itibaren, Bağdat'ta kurulan ve bugünkü Üniversitelere benzer kurum olan Dar-ül Hikme'de başta matematik olmak üzere, öteki bilimler hızla gelişmeye başlamıştır.

    Gıyasüddin Cemşid ve Cebir
    Gıyasüddin Cemşid, aritmetikle ilgili ilmi çalışmalarının yanında, cebirde yüksek dereceden nümerik denklemlerin yaklaşık çözümlerine, kendi görüşü olarak ortaya koyduğu orjinal çözüm yolları ile, etkinliğini zamanımıza kadar sürdürmüştür. Bu konuda; özellikle; ax3 + x3 = bx tipindeki üçüncü derece denklemlerin çözümünde, zamanı için yeni olan çözüm yolları ortaya koymuştur.

    Türk-İslam Dünyası'nda Geometri

    Matematiğin; aritmetik, cebir ve trigonometri dallarında kurucu denecek kadar eser ortaya koyan, 8. ile 16. Türk - İslam Dünyası alimleri; geometri dalında da, temel teşkil edecek, zamanı için orijinal ve kıymetini uzun yıllar koruyan eserler ortaya koymuşlardır.

    İlk defa, cebiri geometriye tatbik etme fikri, ilmi metotlarla çalışan, bu devir matematikçilerinin eseri olmuştur. Bu durum, geometrinin çok kısa zamanda gelişmesini sağlamıştır. Özellikle, eski Yunan alimlerinin ortaya koydukları geometri konularını kapsayan eserler, uzun yıllar anlaşılamamıştır. Ne zaman ki; İslam alimlerinin bu eserlere yazdıkları yorumlamalar sonucu, Öklid ve çağdaşlarının eserleri ancak anlaşılabilirlik kazanmıştır. Bunlardan;

    Hârizmî ve Geometri
    Matematikte yeni sayılabilecek bir dal olan, analitik geometri ile ilgili eserler, analitik geometriyi, 16. yüzyıl Fransız matematikçi Descartes'in, 1637 yılında yazdığı La Geometri adlı eseri ile başlatırlar. Gerçekte, Hârizmî tarafından 830 yılında Arapça olarak yazılan Cebri ve'l Mukabele adlı eserde, analitik geometriye ait ilk bilgiler ortaya konmuştur. Hatta, Ömer Hayyam'in Cebir adlı eserinde de, analitik geometriye ait bilgilerin varlığı görülür. Analitik geometrinin Descartes'la ilgisini, şu şekilde belirtmek, gerçeğin tam ifadesi olur.

    Descartes, kendisinden önceki yıllarda var olan analitik geometri bilgilerini toplayarak sistemleştirmiş ve kısmen de genişletmiştir. Müsteşrik Sigrid Hunke, analitik geometri konusunda aynen şunları yazar. "Adedi çokluklarla (kemiyetlerle) geometrik çoklukların beraber yürütülmesi gerektiğine dair kesin fikir de ilk olarak, İslam ilim sahasında rastlanır. Rönesansımızın üstatları, onun için, Yunanlılar değil, bilakis İslam Dünyası oldu. "Denebilir ki; cebirin geometriye tatbikati demek olan, analitik geometriyi münferit bir geometri dalı haline getirme metotlarını ilk olarak Hârizmî tarafından ortaya konmuştur.

    Trigonometrinin Avrupa'da duyulup dağılmasına etkili olanların başında gelen Sabit bin Kur-ra, geometri konularındaki çalışmaları ile de adını zamanımıza kadar sürdürmüş olan ünlü matematikçilerimizden biridir. Konikler kitabı ile Apolonyos'a serh yazdı. Huneyn bin İshak tarafından Öklid'in Elementler adlı eserine yazılan serhi, ilaveler yaparak düzeltti. Menalaus, Apolonyos, Pisagor, Archimed, Öklid ve Theodosus'un eserlerini Arapçaya tercüme etmekle, geometriye, zaman için orijinal olan, yeni bilgiler kazandırmıştır.

    Ebu'l Vefa ve Geometri
    Trigonometri çalışmaları dışında, düzgün çokyüzlüler konusuyla da uğraşmıştır. 7 ve 9 kenarlı düzgün çokgenlerin yaklaşık çizimlerine dair yeni bir geometrik yöntem ortaya koymuştur. Kısmen Hint modellerine dayalı olarak ortaya koyduğu geometrik çizimleri, geometri bakımından önem taşır. Ebu'l Vefa'nın çizim geometrisine ait ortaya koyduğu çalışmalarına dair bir fikir verebilmek için üç ayrı problemini örnek olarak belirtelim. Bunlar:

    - Pergelle, daire içine, açıklığını bozmadan kare çizmek.
    - Verilen bir doğru parçasını, pergel yardımıyla eşit parçalara bölmek.
    - Verilen bir kare içine, eşkenar bir üçgen çizmek.

    Matematik tarihi incelendiğinde; ünlü matematikçilerden, Thales, Öklid, Pisagor'un hazırladıkları eserler ve bu eserlerinde ortaya attıkları teoremler, Hârizmî, Ömer Hayyam, Sabit bin Kurra, Beyruni, Nasiruddin Tusi'nin ortaya koydukları görüşler sonucu, geometri yeni boyutlar kazanmıştır.


    Türk-İslam Dünyası'nda Logaritma

    Ülkemizde yazılan, matematik tarihi ile ilgili bazı kaynaklarda, Osmanlı Türkiyesi'nde, Logaritma ile ilgili ilk eserin, Osmanlı Türkiyesi'nin son matematikçilerinden İsmail Efendi (1730 - 1791) tarafından 1772 yılında yazıldığı belirtilir.

    Konu ile ilgili ayrıntılı bilgi veren Cevdet Paşa Tarihi'ndeki, bilgilerin yalnış değerlendirilmesi sonucu da, memleketimizde yayınlanan bazı eserlerde, İsmail Efendi logaritmayı icad etti şeklinde bilgiler verilir.

    Logaritma ile ilgili ilk eserin, İskoçyalı John Napier (1550 - 1610) tarafından yayımlandığı bilinen tarihi bir gerçektir. Bu durumda, logaritma ile ilgili bilgiler, İsmail Efendi'den ortalama 80 yıl kadar önce Avrupa matematik dünyasında bilinmekte idi. Konuya biraz daha açıklık getirmek için; tarihi gelişimi içinde, ayrıntıları ile incelenmiş olan Bursalı Mehmet Tahir Efendi'nin Osmanlı Müellifleri adlı eserinde, şu bilgiler vardır: Üçüncü Ahmed zamanında, (1703 - 1730), Paris'e giden 28. Mehmet Çelebi aracılığıyla, Dominique Cassini'nin astronomi tabloları elyazma İstanbul'a gelir. Bu eserin baş kısmında bulunan logaritma cetvelleri, zamanın güveni-lir matematikçisi Kalfazade İsmail Çınari tarafından, 3.Mustafa zamanında ilk defa 1772 yılında, tercümesi yapılan Tuhferi Behic-i Rasini Tercüme-i Ziyc-i casini adındaki kitabın baş tarafına konmuştur. Daha sonraki yıllarda da, Mahmut Şevket Paşa ve Kirkor Kömürcüven tarafından, zamanın bilim dili olan Arapça olarak logaritma cetvelleri hazırlanmıştır.

    Türk-İslam Dünyası'nda Trigonometri

    İçinde bulunduğumuz yüzyılda yapılan bilimsel araştırmalar göstermiştir ki; trigonometriye ait temel bilgiler, 8. ile 16. yüzyıl Türk - İslam Dünyası matematikçileri tarafından ortaya konulmuş ve belli bir noktaya kadar da geliştirilmiştir. Bunun nedenini, şu şekilde açıklamak mümkündür. Bilindiği gibi, 8. ile 16. yüzyılda Türk - İslam Dünyası'nın hemen her yöresinde astronomi (gökbilim) çalışmaları ve bunun sonucu olarak da, yoğun bir rasathane (gözlemevi) kurma çalışmaları vardı. Bu rasathanelerdeki bilimsel çalışmalarda, astronomiye yardımcı olarak, trigonometri kullanılmaktaydı.

    Astronominin temelini teşkil eden küresel astronomi, doğrudan doğruya, küresel trigonometrinin astronomiye uygulanmasından doğmuştur. Gezegen ve uydu ile yıldızların gökküresindeki yerleri (koordinatları) ve hareketleri ile ilgili hesaplamalar; küresel üçgenin, küresel trigonometriye uygulanmasıyla elde edilebilmektedir. Dolayısıyla, o devir Türk - İslam Dünyası'nda, Trigonometri müstakil bir bilim haline gelmiş ve oldukça gelişmiştir.

    8. ile 16. yüzyıl Türk-İslam Dünyası matematik ve astronomi bilginlerinin hazırlamış oldukları "Ziyc" adlı eserin hepsinde, bugünkü trigonometrinin temel bilgileri, ilk olarak ortaya konulmuştur. Gene bu devir Türk - İslam Dünyası bilginleri, Batlamyos'un (Claidius ptolemeios 85-160) ünlü eseri, değişik tarihlerde değişik matematik ve astronomi bilginleri tarafından mıcıstı (almagesti) adıyla şerh edilmiştir. Bu şerhlerde de, yer yer trigonometri bilgileri zenginleştirilip geliştirildi.

    Gıyasüddin Cemşid, 1 derecelik yayın sinüs değerini, bugünkü değerlere göre 18 ondalıklı sayıya kadar doğru olarak hesaplamıştır. Bu konuda 1 derecelik yayın sinüsüsünü geometri ve cebir yoluyla hesaplamış ve böylece trigonometrik tabloların tanzim işini sistemle bir esasa bağlamıştır. Dolayısıyla kendisinden sonra gelen İslam Dünyası ie Batı Dünyası matematikçilerine, zamanında orjinal olan yeni bilgi hazineleri bırakmıştır.

  3. #3
    ooo süper bee
  4. #4
    allah razı olsun sizden bende bu iki kişinin yazılarını çok ama çok beğendim
  5. #5
    Çok Teşekkür Ederim
  6. #6
    Çok Teşekkür Ederim
  7. #7
    Teşekkürler...
  8. #8
    Cok teşekkür koç öptüm by :D
  9. #9
    saolun mmliler
  10. #10
    saolun sizin sayenizde 100 alcam gibi
  11. #11
    proje ödevimde işime yardı ama özet halinde yazdım daha kısa olabilirdi.