İstatistik Nedir? - İstatistiğin Kullanım Alanları

 İstatistik Nedir? - İstatistiğin Kullanım Alanları


  Okunma: 62157 - Yorum: 16
  1. #1
    sponsorlu bağlantılar
    İstatistik Nedir? - İstatistiğin Kullanım Alanlarıİstatistik ya da sayımlama, belirli bir amaç için veri toplama, tablo ve grafiklerle özetleme, sonuçları yorumlama, sonuçların güven derecelerini açıklama, örneklerden elde edilen sonuçları kitle için genelleme, özellikler arasındaki ilişkiyi araştırma, çeşitli konularda geleceğe ilişkin tahmin yapma, deney düzenleme ve gözlem ilkelerini kapsayan bir bilimdir.

    Fizik ve doğa bilimlerinden sosyal bilimlere kadar geniş bir alanda uygulanabilmektedir. Aynı zamanda iş dünyası ve hükûmetle ilişkili tüm alanlarda karar almak amacıyla kullanılır. İstatistik yukarıdaki anlamıyla tekildir. Sözcüğün çoğul anlamı, "sistemli bir şekilde toplanan sayısal bilgiler"dir. Örnek olarak nüfus istatistikleri, çevre istatistikleri, spor istatistikleri, milli eğitim istatistikleri verilebilir.

    İstatistiksel yöntemler, toplanmış verilerin özetlenmesi veya açıklanması amacıyla kullanılır. Bu tür bir yaklaşım betimsel istatistik adını alır. Buna ek olarak verilerdeki örtüşmelerin (kalıplar veya örüntüler), gözlemlerdeki rassallığı ve belirsizliği göze alacak şekilde, üzerinde çalışılan anakütle veya süreç hakkında sonuç çıkarma amacıyla modellenmesi, çıkarımsal istatistik adını alır. Hem betimsel istatistik hem de tahminsel istatistik, uygulamalı istatistiğin parçaları olarak sayılabilir. Matematiksel istatistik adı verilen disiplin ise konunun teorik matematiksel altyapısını inceleyen disiplindir.

    İstatistiğin diğer bölümlerle olan ilişkilerinden doğan kavramlar şu şekilde gösterilebilir:

    Ekonomi+İstatistik = Ekonometri ,
    Psikoloji+İstatistik = Psikometri ,
    Tıp+İstatistik = Biyoistatistik ,
    Sosyoloji+İstatistik = Sosyometri,
    Tarih+İstatistik=Kliometri.


    sponsorlu bağlantılar
  2. #2
    aferin size
  3. #3
    akikokooooooo
  4. #4
    valla işime cok yaradı saolun
  5. #5
    İstatistik ya da sayımlama, belirli bir amaç için veri toplama, tablo ve grafiklerle özetleme, sonuçları yorumlama, sonuçların güven derecelerini açıklama, örneklerden elde edilen sonuçları kitle için genelleme, özellikler arasındaki ilişkiyi araştırma, çeşitli konularda geleceğe ilişkin tahmin yapma, deney düzenleme ve gözlem ilkelerini kapsayan bir bilimdir. Fizik ve doğa bilimlerinden sosyal bilimlere kadar geniş bir alanda uygulanabilmektedir. Aynı zamanda iş dünyası ve hükûmetle ilişkili tüm alanlarda karar almak amacıyla kullanılır. İstatistik yukarıdaki anlamıyla tekildir. Sözcüğün çoğul anlamı, "sistemli bir şekilde toplanan sayısal bilgiler"dir. Örnek olarak nüfus istatistikleri, çevre istatistikleri, spor istatistikleri, milli eğitim istatistikleri verilebilir.
  6. #6
    saulasın işime yaradı
  7. #7
    işime yaradı
  8. #8
    çok işime yaradı çok teşekkürler.
  9. #9
    İSTATİSTİK
    İstatistik Kelimesinin Anlamı

    “İstatistik” ilk kez 18’ınci yüzyılda Almanya ‘da kullanılmaya başlanmıştır: İstatistik kelimesi sözü edilen yüzyıl başında devlet veya resmi kuruluşlar tarafından ülke hakkında toplanan bilgileri anlatmak için kullanılmıştır. İstatistiğe ilişkin en eski ve bügünde geçerli olan temel kavram sayımdır ve çok eski çağlarda insan ve mal sayımıyla ilgili örneklere rastlanılmıştır. Günümüzde “İstatistik” özellikle de “İstatistikler” kelimesi daha çok devlet veya resmi kuruluşlarca olmak üzere her türlü kuruluş tarafından bir ülkenin tamamı veya bir bölümü için toplanan bilgileri belirtmek için kullanılmaktadır.

    Birçok garp dillerinde olduğu gibi dilimizde de “İstatistik” kelimesi daha çok iki anlamda kullanılmaktadır:

    a) İstatistik veriler,
    b) İstatistik bilimi.

    İstatistik veri, sayı ile ifade edilen kollektif ve yaklaşık bilgiler olup istatistik kelimesi bu anlamda daima çoğul halde kullanılır. Eğitim istatistikleri, tarım istatistikleri, dış ticaret istatistikleri gibi.

    İstatistik kelimesinin istatistik bilimi anlamı: yakın zamana gelmeye kadar istatistiğin bağımsız bir bilim kolu sayılıp sayılmaması gerektiği hakkında bir görüş birliğine varılamamıştı. Bir kısım bilginler istatistiği diğer bilimlerin araştırmalarında yararlandıkları metot ve tekniklerden ibaret saymakta idiler. Bazıları sadece istatistik metodelojisini bağımsız bir bilim kolu sayarak tatbiki istatistikleri birer metot olarak kabul etmenin doğru olacağı inancında idiler.

    İstatistiğin bağımsız bir bilim kolu sayılmasına karşı olanların tezi şu şekilde özetlenebilir:
    a) Kendisine özgü bir konusunun olmayışı. İstatistiğin kendisine özgü bir konusu yoktur.
    b) Bir bilim kolunun bazı kanunlar ortaya çıkarması gerekir. İstatistiğin bulduğu bir kanun yoktur.
    c) Bir bilim kolunun bütün için ortaya çıkardığı genel yargılar bütünü oluşturan kısımlar için de aynı derecede sağlam olduğu halde istatistikle bir yığın hakkında ortaya çıkarılan genel yargılar yığının kısımları veya birimleri hakkında bir anlam taşımamaktadır.
    d) Bir bilim kolunun incelediği olay hakkında ulaştığı bir genel yargı zaman ve yer bakımından değerinden birşey kaybetmediği halde istatistiğin bulduğu genel yargılar sadece belli bir yerdeki ve belli bir zaman için belli bir yığın olayına ilişkindir.


    İstatistiği başlı başına bir bilim kolu sayanların cevapları ise şu şekildedir:
    a. Konu: İstatistik sadece yığın olaylarını inceler. Bunun için kendisine özgü bir konusu vardır.
    b. Kanun: İstatistiğin ortaya koyduğu bir “Büyük Sayılar Kanunu” vardır. Bu kanun şu şekilde ifade edilir:
    Gözlem sayısı arttıkça ana eğilimi pozitif ve negatif yönde sapmaya zorlayan geçici ve tesadüfi sebeplerin etkileri daha büyük ölçüde birbirini yok edecek yığın olayının ana eğilimi gerçeğe daha yakın olarak belirir. Başka bir deyişle gözlem sayısı arttıkça olay üzerinde pozitif yöndeki etkilerin negatif yöndeki etkilere oranı gittikçe 1’ e yaklaşır, Büyük Sayılar Kanunu her yığın olayı normal veya anormal koşullar altında aynı derecede geçerlidir.
    c. Genel Yargılar: İstatistik yığın olaylarını inceler. Olayın bir özelliğinin belirtilmesi veya olay hakkında bir genel yargının ortaya konması için gözlem sayısının veya yığını oluşturan birim sayısının yeteri kadar büyük olması gerekir. Bu, büyük sayılar kanununun gereklerindendir.
    d. Zaman ve yer: İstatistiğin ortaya koyduğu genel yargıların ancak belli bir yerde ve zamandaki bir yığın için doğru olup başka yer ve zamanlar için bir değer taşımadığı şeklindeki yargıda hatalıdır. Aynı nitelikte ve yeteri kadar büyüklükte alındığı taktirde bir yığın olayı için bulunan bir genel yargının zaman ve yer değişikliği ile değerinden birşey kaybetmediği görülür.

    Sonuç olarak, istatistik bağımsız bir bilim kolu olarak yerini almış bulunmaktadır.

    İstatistiğin Tanımı
    19.yüzyılda Belçikalı İstatistikçi Quetelet 100’ü aşkın değişik istatistik tanımının varlığını ortaya koymuştur. 1896 yılında La Haye uluslar arası istatistik kongresinde. Alman istatistikçi Engel birbirinden farklı 180 tane istatistik tanımı belirlediğini ifade ederek adete istatistik tanımlarının istatistiğini yapmıştır.
    - Yapılan istatistik tanımlarından birkaçı aşağıdadır:
    - Yığın olaylarını inceleyen ve bunlara ilişkin genel bağıntıları belirtmeye çalışan bir bilimdir.
    - Çok sayıda dış etkene bağlı nesne, varlık ya da olayların sayısal dökümü yapılabilen özelliklerini, incelemeye yarayan bir teknik ya da yöntem kümesidir.
    - Yığın olayların belli amaçlarla gözlemlenmesi sonucu elde edilen verilerin sayısal biçimde işlenmesini sağlayarak, sözkonusu olayların oluşturduğu yığınların bilimsel bir şekilde incelenmesinde kullanılan teknik ve yöntemler bilimidir.
    - Çağdaş anlamda istatistik kısaca “Bilimsel karar ile bilimsel eyleme ışık tutan teknik” diye tanımlanabilir.

    İstatistik Sözcüğünün Kökeni
    “İstatistik” sözcüğünün İtalyanca’da devlet adamı anlamına gelen “statista” sözcüğünden alındığı ifade edildiği gibi, Latince de durum anlamına gelen “status” kökünden türetildiğine de inanılmaktadır. Yunanca’da gözlem için kullanılan “startizein” sözcüğünden kaynaklandığı inancında olanların yanında 15.yüzyılda İtalya’da devletin siyasal durumu anlamındaki “stato” kökünden kaynaklandığı görüşünde olanlar da vardır.
    “İstatistik” sözcüğüyle ilgili olarak kesin bilinen, Alman bilimcilerin 18.yüzyıl başlarında devletin durumuyla ilgili sayısal bilgiler için ilk kez “Statistik” deyimini kullanmış olmalarıdır.

    Türkiye’de Cumhuriyet döneminde yerleşmiş olan istatistik sözcüğüne karşılık olarak, Osmanlı İmparatorluğunda “ihsaiyat” deyimi kullanılmıştır.
    İstatistik Kuramın Gelişmesi

    i.) 17.yüzyıl ortalarında Alman Üniversitelerinde okutulan “Devlet Bilgisi” dersi ile başlangıç böylece devlet “status” sözcüğünden türüyen “istatistik” sözcüğünün ortaya çıkışı sayılara dayanmadan devletin betimlenmesi üzerinde duran bu okulun önde gelenleri Con ring, Archenwell, Schmeitzelldir ii) Daha sonra İngiltere’de ve kısmen Almanya’da ortaya çıkan “Sigorta Matematikçileri Okulu” önde gelenleri Graunt,Pethy,Halley,Süssmilch olan bu okul, dogum, ölüm gibi nüfus olaylarını sayısal verilere dayanarak çözümler. iii) Kökeni Pascal’da ,Galileo’da aransa da ”Büyük Sayılar Kanunu “ile gerçek öncülüğü Bernouilli’nin yaptığı olasılık hesabını geliştiren okul Bernouilli’yi de Moivre, Laplace, Lagendre, Gauss, Poisson, Bienayme izler. İv) Bu okulların düşüncelerini birleştirerek tümdengelimci istatistiğe, tümevarımcı istatsitiği katarak çözümlemeye ağırlık veren okul ve temelini atan Quetelet’dir. Ardından Galton, Pearson, Spearmann,Fisher ve daha inceleri gelir.v) Son olarak bu okullara başta Benzerci olmak üzere çok değişkenli çözümlemede betimsel istatisteğe yeni boyutlar kazandıran Fransız okuluda eklenebilir.

    İstatistik Araştırmanın Amacı
    Rastlantıyı göz önünde tutarak olayları belirleyen genel yasaları, genel eğilimi ortaya çıkarmak, ana nedenleri aramak, olaylar arasındaki ilişkileri bağlantıları bulmak, böylece türlü yönetim, bilim ve teknik dallarında yapılacak kestirimlere, öngörülere, alınacak kararlara, girişilecek eylemlere yardımcı olmaktır.

    Günümüzde İstatistiğin Önemi
    Günümüzde hükümetler politikalarını förmüle etmek ve aldıkları kararları desteklemek, politikacılarda halkı ikna etmek için istatsitikleri temel almaktadır. Tıbbı araştırmlarda hastaların teşhişinde ve yeni ilaçların yan etkilerinin ortaya kaonulmasında istatiksel teknikler kullanılmaktadır. Ekonomi, işletme ve kamu yönetiminde istatistiğin kullanılması son yarım yüzyıl içinde olaganüstü bir gelişme göstermiştir. İstatiksel yöntem sosyal bilimlerin bütün dallarında hemen hemen tek pratik çalışma aracı durumundadır.

    iSTATİSTİK TABLOLAR
    3
    3.1 Tablo Tipleri. Verilerin istifadeye sunulmasında kullanılan çeşitli istatistik tablolar; genel tablolar ve analiz tabloları olmak üzere ikiye ayrılmaktadır. Genel tablolar, olay hakkında ayrıntılı ve tasviri bilgiler için düzenlenen tablolardır. Analiz tablolarında olay hakkında özet bilgilere yer verilerek önemsiz veriler ihmal edilir.

    İstatistik tablolarda veriler belli bir sıraya göre yer alır. Verilerin sıralanması ihtiyaca göre şekil alır. Verilerin özel bir sıraya konması incelemeyi kolaylaştırır. Verilerin sayısı ne kadar çok olursa olsun tablo halinde istifadeye sunulmasında bir güçlük ortaya çıkarmaz. Bundan başka, çok sayıda dizilerin mukayesesi ancak tablo ile mümkündür.

    3.2 Tablonun Kısımları. Birbirlerinden farklı çeşitli istatistik tablolar bulunmakla beraber bütün tablolarda şu kısımlar mutlaka yer alır: 1. Tablonun adı, 2.Başlık, 3.Ön sütun , 4. Gövde.Tablonun bu ana kısımları Tablo 1 de görülmektedir.

    Tablonun Adı. Tablonun adı, tablodaki verilerin niteliğini, nereye ve ne zamana ilişkin olduğunu açıklamalıdır. Ancak, ad için çok uzun ifadelere kaçılması doğru olmaz. Gerekirse açıklıktan biraz fedekarlık yapılarak çok uzun olmayan bir ifade tercih edilir.

    Başlık, Sütunlardaki maddelerin ve verilerin niteliğini gösterir, ifadelerdir. Başlığa, sütun adı da diyebiliriz.

    Ön Sütun. Tablonun en solundaki sütununa ön sütun denir. Ön sütunda, belli bir sıra altında maddeler veya vasıflara ilişkin sınıflar yer alır.

    2. D.İ.E = Devlet İstatistik Enstitüsü

    3. Geçici verilerdir.
    Gövde. Tablonun başlık ile ön sütunu tarafından çevrelenen kısmıdır. Gövde verilerin yer aldığı ve satır sayısı ile sütun sayısının bir eksiğinin çarpımı kadar verinin yazılabileceği yer bulunan kısmıdır. Bunlardan bazılarının boş kalması veya hepsinin dolu olması mümkündür.

    3.3 Tablo Düzenlenirken Göz Önünde Tutulması Gerekli Bazı Noktalar.
    Bir istatistik tablosu düzenlenirken aşağıdaki noktaların göz önünde tutulması faydalı olur:

    Basitlik. İstatistik tablolar mümkün olduğu kadar basit olmalıdır. Basit tablo, ön sütun ve başlıkta yalnız bir vasfın sınıflarının yer aldığı tablodur. 1 sayılı tablo basit ve 2 sayılı tablo ise bileşik bir tabloya örnek olabilir. Özellikle istatistik bilgisi sınırlı olan kimselerin yararlanması için düzenlenen tablolarda basitlik önemle ele alınacak bir noktadır. Karışık tablolara gidildikçe gereken faydanın sağlanması güçleşir.
    Kaynak. Kitap broşür ve diğer benzeri yayınlardaki istatistik tablolarda yer alan veriler, çok kez, yayımı yapanın uyguladığı bir metotla elde ettiği bilgiler değildir.

    Başka kuurmların elde ettiği veriler aynen bazı işlemlere tabi tutularak alınabilir. Bu gibi hallerde verilerin kaynağı hakkında açık bilgi verilmelidir. Çünkü, bu verileri kullanacak olanlar onların ne çeşit bir metotla elde edildiği, doğruluk dereceleri, kavramlar için kullanılan tarif ve açıklamalar ve benzeri diğer hususlar hakkında bazı bilgilere ihtiyaç duyabilirler. Bu gibi hususlar hakkında yeterli bilgi edeinmeden verilerden gerektiği şekilde faydalanmak mümkün olmaz. Bunun için, kaynakla ilgili olarak, yayımı yapanın adı, yayının adı, aktarılan verilerin bulunduğu sayfa numarası veya tablo numarası, yayım yeri ve tarihi açıklanır.

    Kaynak hakkında verilen açıklama, kısa olmak şartiyle, tablonun adının altına yazılır (Tablo 1). Açıklama uzun olduğu takdirde dipnot yerine veya tablonun uygun bir aşka yerine yazılır.

    Tablonun şekli ve büyüklüğü. Bir istatistik tablosunun şekli ve büyüklüğü şu faktörlere göre belirir:
    1. Tablonun yer alacağı yayının sayfa büyüklüğü. Bir tablonun şekli ve büyüklüğü, her şeyden önce, yer alacağı yayına uygun olmalıdır.

    2. Sütun sayısı ve genişlikleri. Tablonun genişliği sütun sayısı ve genişlikleri ile belirir. Geniş tablolar, incelemeyi zorlaştırdığı için, tercih edilmemelidir. Özellikle satır aralıları küçük olan geniş tablolarda sağdaki sütunlarda yer alan bir verinin hangi sınıf veya maddeye ilişkin olduğunun anlaşılması zorlaşır. Geniş bir tablo düzenlemek zorunda kalındığı takdirde ön sütundaki maddelerin,aynı sıraya göre son sütunda da gösterilmesi incelemeyi kolaylaştırır (Tablo 3).
    Bazı hallerde verilerin bin veya milyon olarak alınması, ihtiyacın karşılanması bakımından, sakıncalı sayılmaz. Böylelikle tablo genişliğinden önemli bir tasarruf sağlanır (Tablo 3).

    3. Satır sayısı. Bir tablonun uzunluğu, ön sütunda yer alan madde veya değer sınıfı sayısına göre belirir. Madde veya sınıf sayısı, bazı hallerde, bir sayfaya sığmayacak kadar çok olabilir. Bu taktirde tablo birden fazla sayfa kapsar (Tablo 58). Tablonun boyunun uzaması veya birden fazla sayfa kapsaması genişliğinin artmasından daha az sakıncalıdır.
    Bununla beraber tablonun mümkün olduğu kadar kısa olamasına çalışılır. Özellikle madde sayısı çok olan( ayrıntılı meslek veya faaliyet kollarına göre nufüs, maddelere göre ithalat veya ihracat tablolarında olduğu gibi) bir tabloda satır aralıkları dar tutulur. Ancak, sütun sayısı çoğaldıkça satır hizalarını seçmek zorlaşacağınadan her 5 veya 10 sık satırdan sonra satır aralığının genişletilmesi ile bu sakınca azaltılır.

    İstatistik tablolarda, satır çizgisi kullanılmaz. Sadece, toplamlar iki çizgi arasında gösterilebilir. Toplamlar.genellikle, tablonun altında gösterilmekle beraber bazen birinci satıra alınarak altına bir satır çizilir.

    Tablo numarası. Özellikle, bir yayında fazla sayıda tablo bulunursa bunlara bir sıra numarası verilmesi uygun olur. Aksi taktirde, metinde zaman zaman söz konusu edilecek tabloların uzun adlarının tekrarlanması zorunda kalınması, psikolojik yönden önemli bir sakıncadır.

    Kısaltmalar ve denden( “ “) işaretleri. Tablolarda kısaltmalardan kaçınılmalıdır. Tabloyu düzenliyen kimse için anlamı pek belli olan bir kısaltma, tablodan faydalanması beklenen kimselerden çoğunun anlayamadığı bir kısaltma niteliğinde olabilir. Aynı ifade veya verilerin alt alta gelmesi halinde(“ “)işaretleri kullanışamyıp ifade veya veriler aynen tekrarlanarak yanlış anlamlara yol açılması önlenir.

    Önemli maddelerin belirtilmesi. Özellikle analiz tablolarında, önemli verilerin göze çarpacak şekilde gösterilmesi uygun olur. Bunun için aşağıdaki iki yoldan faydalanılır:

    a. Önemli sayılan verilere gövdenin sol ve üst tarafında yer verilir. Toplamlar önemli sayılıyorsa birinci satıra yazılır.
    b. Önemli sayılan veriler diğerlerinden daha koyu mürekkeple yazılmak suretiyle göze çarptırılır. Mümkün olduğu takdirde değişik renklerden de faydalanılabilir.

    Mukayese kolaylığı. Tabloda birbirleriyle mukayese edilecek veriler bulunduğu taktirde verilerin bu işi kolaylaştıracak şekilde tabloda yer alması gerekir. Bu bakımdan, aşağıdaki hususlara dikkat edilmesi faydalı olur:

    a. Alt alta olan verilerin mukayesesi, yan yana olanlarınkinden daha kolaydır.
    b. İki veya daha fazla dizinin mukayesesi yan yana gelen sütunlarda daha kolay olur. Dizilerin alt alta satırlar şeklinde bulunması mukayeseyi zorlaştırır.
    c. İster aynı satırda, ister aynı sütunda bulunsun, mukayese edilecek veriler bir birinden uzaklaştıkça mukayese zorlaşır.

    Ölçü bitrimleri. Bir tablodaki bütün veriler aynı ölçü birimi ile ölçülen değerler niteliğinde iseler ölçü birimi, başlıklar üst çizgisinin üzerinde uygun bir yerde açıkalnhır. Bir sütundaki veriler aynı ölçü birimini haiz, fakat sütundan sütuna ölçü birimi değişiyorsa ölçü biriminin niteliği başlıkta açıklanır( Tablo 10). Nihayet, ölçü birimleri sütunlara göre değil satırlara göre değişiklik gösteriyorsa ön sütunda madde adından hemen sonra ölçü biriminin adı yazılır.
    Verilerin yuvarlaklaştırılması. Orijinal veriler çok büyük, fakat ihtiyaç bakımından birler basamağına kadar gösterilmesi lüzumsuz ise veriler bin veya milyon olarak tabloya alınır( Tablo 2). Gerçi bu ikisi arasında diğer yuvarlak değerler de (10, 100, 1000 gibi) seçilebilirse de uygulamalarda daha çok bin veya milyon tercih edilmektedir. Bir çok hallerde de veriler mesela, yüzbin cinsinden gösterilmek istense bile bunun yerine milyon cinsinden, fakat , bir basamak kesirli alınması daha pratik sayılır. Verilerin bin veya milyon cinsinden anlaşılması 100, 1000 veya bir başka yuvarlak değer cinsinden anlaşılmasından daha kolaydır. Veriler, genellikle, yaklaşık değerler olduğundan bazı hallerde birler basamağına veya kesirlerine kadar gösterilmesi gülünç olur.

    Verilerin yuvarlaklaştırılması bazı hatalara yol açar. Ancak her madde veya sınıf için yapılan pozitif veya negatif yöndeki hatalar kısmen bir birini yok edeceklerinden yuvarlak değerlerden hesaplanan toplam, ortalama, nispet ve benzeri diğer değerlerin hatası nispeten küçük olur. Genellikle, sınıf veya madde sayısı arttıkça verilerin yuvarlaklaştırılması ile bunlar dayanarak hesaplanan istatistiklerin bu yüzden taşıyacakları hata payı küçülür. Bununla beraber, varsa toplam ortalama ve benzeri istatistiklerin orijinal veriler yuvarlaklaştırılırken 0,5 den büyük kesirler 1 birim sayılır ve 0,5 küçükler atılır. Tam 0,5 olan kesirli değerler için kesirden önceki rakam tek ise 1 birim çift ise sıfır birim kabul edilmek suretiyle hata azaltılır.

    Tablolarda Kullanılan İşaretler. Tablolarda bazı ortak işaretler kullanılır. İşaretlerde uluslar arası bir uygulama için çalışılmaktadır. Bir çok kimseler buna uymakta iseler de ortak işaretler dikkate alınmadan düzenlenen bir çok tablolara da hala rastlanmaktadır. Birleşmiş Milletler İstatistik Şubesi üye memleketlere, tablolarda çeşitli maksatlar için aşağıdaki işaretlerin kullanılmasını tavsiye etmektedir:

    (.) Söz konusu değil. Örneğin, yaşa göre medeni hale ilişkin tablolarda evlenme çağının altındaki nüfus için (.) işareti kullanılır.
    (...) Veriler elde edilmedi.
    ( -) Madde veya sınıfın değeri sıfır.
    (0,0) Değer, kullanılan birimin yarısından küçük .

    Bütün istatistik tablolarda aynı kavram için aynı işaretlerin kullanılması ile tablolardan daha kolay yararlanma imkanı sağlanır. İşaretlerin ne anlamda kullanıldığının, yayının uygun bir yerinden açıklanması gerekir.

    3.4 Verilerin Sıralanması. Tablolarda, verilerin bazı esaslara göre bir düzen altında yer aldığına işaret etmiştik. Veriler için uygulanan bir çok sıralama şekilleri vardır. İhtiyacı en iyi karşılayan veya olayın niteliğine en uygun sıralama seçilir. Başlıca sıralama türleri şunlardır:

    1. Büyüklük. İncelemeyi kolaylaştırmak için, çok kez, kantatif vasıflar ilişkin bireysel değerler küçükten büyüğe veya büyükten küçüğe doğru sıraya konarak bir sıralı dizi haline getirilir. Veya çokluk bölünümlerinde belli değer sınıflarına göre gruplara ayrılır. Bunun sonucu olarak veriler küçükten büyüğe veya büyükten küçüğe doğru değer sınıflarına göre sıralanmış olur. En çok analiz tablolarında kullanılan bu sıralama şekli olayın zaman içindeki akımının önemli sayıldığı hallerde uygulanamaz.

    İstatistiğin Faydaları
    İstatistik metodlarının iki fonksiyonu vardır: Birincisi
    1) Bilim adamına, bulgularını bildirirken yardımcı olmak. İkincisi
    2) Bilim adamının verilerin ötesinde daha genel sonuçlara gitmesine yardımcı olmak.

    İstatistiğin Uygulama Alanları
    Çağımızda sayısal bilgi toplanabilen her araştırma alanında istatistik yöntemler kullanılır:Toplumsal olayların gelişimi, davranış psikolojisi, otomatik üretim süreçleri, bilgisayarlar gibi büyük teknik sistemlerinin yönetimi, jeolojik süreçler, gazlardaki karmaşık olgular, sinir sisteminin işlevleri, beynin yansıtıcı ve yönlendirici çalışmaları istatistik yöntemlere başvurulmadan incelenemezler. Biyoloji,antropoloji, sosyoloji, psikoloji, iktisat, işletme, tıp, kuantum fiziği, biyolojik vb.... özetle tüm bilim dalları, yöntem kuruluşları, teknoloji, iş ve piyasa araştırmalarında istatistikten yararlanılır.

    Örnek verecek olursak
    a. Kamu Hizmetlerinin Görülmesinde İstatistiğin Rolü
    Mesela; Milli Eğitim politikasının gerektirdiği şekilde planlanıp en yararlı bir şekilde uygulanabilmesi için gelecek yıllarda ilk, orta ve yüksek tahsil çağında bulunan kimselerin sayılarının bilinmesinin, bunlara tahsil imkanı sağlanabilmesi için ne kadar öğretmene, okula ve eğitim-öğretim araçlarına ihtiyaç olduğunun belirlenmesinde kullanılır.

    b. Bilimsel Araştırmalarda İstatistiğin Rolü
    Bilimsel araştırmalarda istatistik önemli bir rol oynamaktadır. Özellikle, deneysel araştırmalarda, bir hipotezin kabule değer olup olmadığının belirtilmesi ve araştırma sonuçlarının objektif olarak yorumu ancak modern istatistik metotlarına dayanmak suretiyle mümkündür. İst. Metoduna dayanmayan araştırmalar va bunlarla ulaşılan sonuçlar bilimsel sayılmamaktadır.

    BÖLÜM :1
    PSİKOLOJİDE İSTATİSTİK
    İstatistik teorisi uygulamalı matematiğin bir parçasıdır. O halde istatistik teorisi, psikoloji disiplininin içinde değildir. Bununla birlikte, modern psikolog, istatistik teorisinin hiç değilse temel bilgilerini bilmeyi faydalı bulur. İstatistik öğrenme, psikoloji alanında yetişmenin vazgeçilmez bir parçasıdır. İstatistik teorisi, modern psikoloji araştırmalarıyla şöyle bir tanışıklık isteyen birisi için bile faydalıdır. Psikolojide, başkalarının araştırmalarını anlamak ve değerlendirmek açısından olduğu kadar, kendi araştırma bulgularının sonuçlarını bildirmek ve yorumlamak açısından da istatistik bilmek önemlidir. İstatistik bilgisi, psikoloğa, fiilen gözlediği verilerin ötesine ne ölçüde geçebileceğini değerlendirmek için birtakım analiz aletleri kazandırır.

    BETİMSEL İSTATİSTİK
    Sokaktaki adam bir istatistikden(istatistik değerden) söz ederken, bir durumu betimleyen bir sayıyı kasteder. İstanbul caddelerinde bir günde meydana gelen trafik kazalarının ortalama sayısı işte bu anlamda bir istatistiktir(istatistik değerdir). Mart 1990’da Türk Ordusundaki asker sayısı bir başka istatistiktir(istatistik değerdir). Üniversite öğrencilerinin ortalama mezuniyet yaşı yerine bir başka istatistiktir(istatistik değerdir). Bir istatistik (istatistik değer) şu veya bu şeyin sayısal durumunu betimler.

    İstatistik teorisinin büyük ve önemli bir kısmı, sayısal veri topluluklarını betimlemekle uğraşır. En faydalı olmak ve en kolay bildirilmek için, bir veri topluluğunun toparlanması ve özetleme biçimleridir. Betimsel istatistik teorisi,verileri betimlenin çeşitli biçimlerindeki bilgi ile ve verileri çeşitli biçimlerde sunmanın göreceli verimliliği ile uğraşır.
    Örneğin, bir psikolog, bir grup spor yapan erkek lise öğrencisinin ve bir grup spor yapmayan erkek lise öğrencisinin mesleki amaç ve ilgilerini karşılaştırmak isteyebilir. Bununla ilişkili verileri toplayınca, iki grubun herbirini nasıl betimleyeceğine karar vermelidir. Çok büyük miktarda potansiyel bilgi, grupların bir bütün olarak kolayca kavranabilir birkaç özelliği içine sıkıştırılmak zorundadır. Ondan sonra, psikolog, grupların nasıl karşılaştırılacağı meselesiyle uğraşmalıdır. Karşılaştırmanın esası ne olacaktır? Eğer gruplar arasında farklar varsa, bu farklar en açık bir şekilde nasıl gösterilecektir? Gruplar arasında şu veya bu tarzda sayısal karşılaştırmalar yapılmalı mı? Veriler grafikle mi en iyi sunulabilir? Spor yapan bir erkek lise öğrencisinin tipik ilgi örgüsü bulunabilir ve spor yapmayan tipik bir erkek lise öğrencisinin farklılığı gösterilebilir mi? Bütün bu sorular betimsel istatistik göstergelerinin seçilmesi ve kullanılması ile ilgili sorulardır.

    Bundan sonraki iki bölümde esas itibarıyla, en çok kullanılan betimsel istatistik göstergelerle uğraşacağız. Verilerin hem grafik hem sayısal özetlenmeleri üzerinde duracağız. Ancak şunu da eklemek gerekir ki bu metodlar, başvurulması mümkün betimsel tekniklerden seçilmiş sadece birkaç tanesidir;veri,lerin farklı amaçlarla toparlanması ve bildirilmesi için çok çeşitli istatistik teknikler geliştirilmiştir. Burada ana çizgileriyle verilen teknikler, sırf çok karşılaşıldıkları için değil, aynı zamanda, daha genel matematiksel istatistik teorisinde merkezi roller oynadıkları için seçilmiştir.

    MUHAKEME İSTATİSTİĞİ
    Betimsel istatistiğin incelenmesi, veriler hakkında bildirimde bulunmak için bir dil kazandırır. Betimsel istatistik daima, bir deneyicinin topladığı belirli veri topluluğu ile uğraşır. Betimsel istatistiği kullanmada deneycinin görevi, o verilerin gösterdiği şeyi yakalamak ve bildirmektir.

    Bunu yapınca deneycinin ilgisi sona ermez. Bir bilim adamı olarak deneyci, doğadaki ve davranıştaki düzenlilikleri bulmaya ilgi duyar. Bu düzenliliklerden genel prensiplere- bundan sonraki gözlemlerin sonucunu önceden kestirmeye imkan veren prensiplere- ulaşmayı ümit eder.

    Bilim adamı, koşulan şartların var olduğu her zaman geçerli olması beklenebilecek genel ilişkileri arar. Bu ilişkiler, etrafımızdaki dünya gözlenerek keşfedilir ve doğrulanır.

    Öte yandan , hiçbir ölümlü bilim adamı, genel bir sonuç çıkarmak istediği olayların hepsini asla gözleyemez. Genel sonuca, sınırlı sayıda gözlemlere dayanarak varmak zorundadır. Bilim adamı, gözlediği özel şeylerden genel bir sonuca ilerler. Özelden genele gitme süreci tümevarım olarak bilinir. İşaret etmek gerekir ki özel gözlemlerden genelleme süreci çok riskli olabilir. Bilim adamının yaptığı herbir gözlem, bilim adamına, o tür gözlemlerin hepsini yapabildiği takdirde elde edeceği izlenimlerden farklı bir izlenim verebilir.

    Ancak sınırlı sayıda gözlemler yapma zorunluluğu ile yüzyüze kalan bilim adamı, gerçek veya uzun vadedeki durumun niteliği hakkında ancak bir tahmin olarak genel sonuçlara varabilir. Gözlemlerine dayanarak bir çeşit genel sonuca ulaşabildiği zaman bile bilim adamı,haklı olduğundan emin değildir, şu veya bu derecede kayıtsızlık duyar.
    İste bu noktada istatistik, bilim adamının çalışmasına en değerli ve enteresan katkılarından birini yapar. Muhakame istatistiği teorisi, özel kanıtlardan genel sonuçlara varmak için metodlar sağlar. Bu teori, bilim adamlarına, belirli bir veri toplululuğuna dayanarak ne gibi kararlar vermesi gerektiğini söylemez. Ama sonuçlara ulaşmada işe yarar yolların seçimi hususunda deneyciye rehberlik eder. Bunun da ötesinde, istatistik teorisi, olasılık teorisinden yararlanarak bilim adamına, bir veri topluluğundan belirli bir sonuca varırken girdiği riski hesaplama imkanını verir.

    Her ne kadar bu kitapta, muhakeme istatistiği teorisine ancak kısaca değinilecekse de, öğrenci, psikologların ve başka bilim adamlarının, verilere dayanarak istatistik tahminler yapma yolları hakkında bir miktar bilgi edinecektir. Bu bilgiyi edinebilmek için öğrencinin, basit şekliyle olasılık teorisiyle biraz tanışıklığı olmalıdır. Bunun için, kitabın 4 . bölümü öğrenciyi temel olasılık kavramlarıyla tanıştırmak için düzenlenmiştir. Bu kavramlar, sonraki bölümlerde tartışılan muhakeme metodlarının temelini oluşturacaktır.

    İSTATİSTİĞİN FAYDALARI
    İstatistik metodların, psikoloğun çalışmasına sadece bir ilaveden başka bir şey olamdığını, psikoloji öğrencisi daha ilk baştan anlamalıdır. Yukarıda söylendiği gibi, istatistik metodların iki fonksiyonu vardır: Birincisi, bilim adamına, bulgularını bildirirken yardımcı olmak ve ikincisi, bilim adamının verilerin ötesinde daha genel sonuçlara gitmesine yardımcı olmak. Böyle olmakla birlikte, yaptığı deneyin ve topladığı verilerin gerçek değerinin, bilim adamının kullandığı istatistik aletlerle hiçibir ilgisi yoktur. Bir istatistik metodun uygulanması, fena bir deneyi iyi bir deneye dönüştüremez. Şunun ve şunun doğru olduğuna verilerin bizi inandırma gücü, deneyin kritik bir tarzda düzenlenmiş olmasından ve bir bütün olarak mantığından ileri gelmez. Araştırmaya yeni başlayanların bunu hatırdan çıkarmaması özellikle önemlidir. Öte yandan, iyi tasarlanmış ve yapılmış bir deneyde istatistik Metodlar, deneyin anlamını açıklığa kavuşturmada ve varılan sonuçların genelleştirmeye elverişli olduğunu göstermede son derece yardımcı olabilir.
    İstatisitiğin uygulamaları bütün araştırma alanlarında, fizik bilimlerde, biyolojik bilimlerde, mühendislikte, iş ve piyasa araştırmalarında ve başka alanlarda görülür. Farklı alanlarda fiilen kullanılan metodlar farklılıklar gösterse de, bu metodların hepsi aynı temel istatistik teorisine dayanır. Bundan sonraki bölümlerde birtakım istatistik metodlar ana çizgileriyle verilecektir. Bu metodlar iki anlamda temeldir. Birinci olarak, bu metodlar psikolog

  10. #10
    Çok işime yaradı...Emeğinize sağlık:)
  11. #11
    Allah senden razı olsun çok işime yaradı bundan böle bütün ödevlerime burdan bakıcam