sponsorlu bağlantılar
Matematikte Gerçek sayılar (veya reel sayılar) kümesi, oranlı sayılar (rasyonel sayılar) kümesinin standart metriğe göre bütünlenmesiyle elde edilen kümedir. Reel sayılar kümesi 72 - Gerçek Sayılar - Reel Sayılar sembolüyle gösterilir. Daha basit söyleyişle, bir gerçel sayı, ondalık gösteriminde virgülden sonra sonsuz basamağı olan bir sayıdır.

Her oranlı sayı (rasyonel sayı) bir gerçel sayıdır; virgülden sonra tekrar eden ondalık açılımı vardır (0 dahil).

Örneğin:
106 - Gerçek Sayılar - Reel Sayılar veya
107 - Gerçek Sayılar - Reel Sayılar veya
108 - Gerçek Sayılar - Reel Sayılar

eşitliklerinde olduğu gibi. Burada dikkat edilmesi gereken, ondalık basamaklardaki rakamların bir süre sonra bloklar halinde periyodik tekrar etme özelliğidir. Bu şöyle ispatlanabilir: m, n iki tamsayı (n pozitif) olsun. m/n oranlı sayısı ondalık ifade edilmek istendiğinde, m 'yi n 'ye bölerken (bölme algoritmasını uygularken) ilk adımda kalan 0 ile n arasında olacaktır. Kalanın yanına sıfırlar ekleyip bölmeye devam edilecek ve bir sonraki adımda kalan yine 0 ile n arasında olacaktır. Sonsuz adımda sonlu sayıda değer alabilen kalanlar, bir süre sonra aynı değeri alacak ve kendini tekrar edecektir.

Oranlı sayılardan gerçel sayıları elde etme işlemiyse oranlı sayılara ondalık açılımındaki rakamların devirsel tekrar etmediği sayıların eklenmesi olarak düşünülebilir. Bu tür sonradan elde ettiğimiz gerçel sayılara irrasyonel sayılar denir.

İrrasyonel sayıların varlığı

Düzlemde herhangi bir doğru parçası alıp buna birim uzunluk diyelim. Tamsayılarla bu doğru parçasının katları birebir eşlensin. Alınan bir doğrunun üzerinde bu tamsayı uzunlukları ve olası tüm oranları (oranlı sayılar) işaretlensin. Gösterilebilir ki, herhangi iki oranlı sayı arasında sonsuz çoklukta oranlı sayı vardır. Demek oluyor ki, alınan doğru üzerinde birbirlerine istenildiği kadar yakın ve oranlı sayıları temsil eden iki nokta (oranlı nokta) arasında , sonsuz çoklukta oranlı nokta vardır.

Bu tür noktaların, dolayısıyla uzunlukların varlığını ispatlamak için, kenar uzunluğu 1 birim olan bir karenin köşegen uzunluğunu (x) sayı doğrusu üzerinde işaretleyelim. x uzunluğu, oranlı bir sayı değildir, yani p ve q birer tamsayı olmak üzere p/q şeklinde gösterilemeyen bir sayıdır; bu sayı 30 - Gerçek Sayılar - Reel Sayılar olarak gösterilecektir.
Kabul edelim ki x=p/q olsun. Bundan başka, bu kesrin artık kısaltılamayan bir kesir olduğunu farz edelim, yani p ve q aralarında asal olsunlar. Başka bir deyişle, bunların 1'den başka ortak bölenleri bulunmasın. Pisagor teoremi sayesinde x2=2=p2/q2 elde edilir. Dolayısıyla 2q2=p2p ve q aralarında asal olduğu için 2, p 'yi bölmek zorundadır. Böylece eşitliğin sağ tarafı 4'e bölünür. Sol tarafının da dörde bölünmesi gerekeceğinden q da 2'ye bölünmek zorunda kalır. Hem p hem de q sayıları 2'ye bölünebiliyorsa, aralarında asallık kabulüyle çelişkili bir sonuç bulunmuş olur. O halde x 'in oranlı bir sayı olduğu kabulünden vazgeçmek gerekecektir.

Bu ispat, bir Pisagorcu olan Hippasus'a atfedilmektedir (İ.Ö: 5. yüzyıl). İrrasyonel sayıların varlığının ilk antik Yunan matematikçi Pisagor'un okulu tarafından anlaşılmış olduğu görüşü yaygındır. Fakat Pisagor bu sayıların evrenin düzenine aykırı olduğunu düşünmüş ve öğrencilerine bu sayıların varlığını açıklamayı yasaklamıştır. Rivayete göre Hippasus'u o öldürtmüştür.

İrrasyonel Sayılara Örnekler
109 - Gerçek Sayılar - Reel Sayılar birer irrasyonel sayıdır. İki irrasyonel sayının toplamı, çarpımı, yine bir irrasyonel sayı olmak zorunda değildir.

Gerçek sayıların kurulması

Gerçek Sayılar Oransız sayılar kümesi ile oranlı sayılar kümesinin birleşimi Gerçek sayılar kümesini oluşturur. Bu kümeye reel sayılar veya gerçek sayılar da denir. Geometride karşılaşılan bazı büyüklüklerin anlamlandırılabilmesi için Klasik Yunan Dönemi'nde, yaygın inanca göre Pisagor ve öğrencileri tarafından sayı kavramına dâhil edilmişlerdir. Anlatılanlara göre Pisagor doğadaki tüm büyüklüklerin rasyonel sayılarla ifade edilebileceğini söylemekteydi. Fakat bulduğu hipotenüs eşitliğinin bir sonucu olarak x2 = 2 gibi bir değerlerle karşılaştı. Uzun yıllar boyu bu tür sayıların uzun kesirlerle ifade edilebileceğini iddia etti ve göstermeye çalıştıysa da, öğrencilerinden birinin bu gibi sayıların kesinlikle kesirli bir biçimde gösterilemeyeceğini ispat etmesiyle ikna olur ama hayatı boyu bunun bir sır gibi gizlenmesi için çalışır ve doğada gerçek sayıların yeri olmadığını söylemeye devam eder. Gerçek sayılar kümesi harfi ile ifade edilir. İrrasyonel sayılar kümesi ile rasyonel sayılar kümesinin birleşimi reel sayıları oluşturur. Bu kümeye 'gerçel' veya 'gerçek' sayılar da denir. Geometride karşılaşılan bazı büyüklüklerin anlamlandırılabilmesi için Klasik Yunan Dönemi'nde, yaygın inanca göre Pisagor ve öğrencileri tarafından sayı kavramına dahil edilmişlerdir.

Belitlerle inşa

Aşağıdaki belitler aracılığıyla kurulan gerçel sayılar sistemi, bütün sıralı bir cisimdir. Kümeler kuramının Zermelo-Fraenkel belitleri ile inşası kabul edilerek, aşağıdaki belitleri sağlayan bir modelin varlığı ve bunları sağlayan herhangi iki modelin birbirine izomorfik olduğu gösterilebilir.

Gerçel sayılar sistemi bir R kümesi, içinde 0 ve 1 adlı iki öğe (eleman), + ve x ile gösterilen iki tane ikili işlem ve ≤ olarak gösterilen bir ikili bağıntıdan oluşuktur. Bunlar aşağıdaki belitleri sağlar:
1. (R, +, x) bir cisimdir.
2. (R, ≤) tamamen sıralı bir kümedir.
3. ≤ bağıntısı + ve x işlemleri altında korunur:

  • a, b ve c R 'de, ve a ≤ b olmak üzere a + c ≤ b + c olmalıdır.
  • a, b R 'de, ve 0 ≤ a, 0 ≤ b olmak üzere 0 ≤ a x b olmalıdır.

4. ≤ sıralaması bütündür: R'nin boşküme olmayan ve yukarıdan sınırlı her alt kümesi, en küçük bir üst sınıra sahiptir.


sponsorlu bağlantılar